Hydrolysis of Poly(acrylamide)-Starch Graft Copolymer

M. I. KHALIL,* S. FARAG, and S. ABD EL FATTACH

Textile Research Division, National Research Centre, Dokki, Cairo, Egypt

SYNOPSIS

Poly(acrylamide)-starch graft copolymer was treated independently with sodium hydroxide and different acid solutions. The different acids include phosphoric, hydrochloric, and sulphuric acid. The treatment was carried out under a variety of conditions including sodium hydroxide concentration, time, and duration of hydrolysis as well as type of acid used. The extent of hydrolysis was assessed by estimating amide and carboxyl content as well as the acrylate and starch content before and after treatment. It was found that the increment in carboxyl content is equal to the decrement in amide on using sodium hydroxide concentration up to 1N, while using higher concentration than 1N leads to a difference in formed carboxyl and decreased amide groups. The magnitude of this difference depends on sodium hydroxide concentration as well as temperature and duration of hydrolysis. The maximum value of carboxyl content obtained was 593 meq/100 g sample. The acidic treatment of the starch copolymer does not affect the conversion of amide groups to carboxyl groups, and the sole effect was hydrolysis of starch component of the copolymer. Evaluation of the alkali-treated copolymer as cation exchanger was carried out. The absorption efficiency % of different cations depends on the associated anions and follow the order: $Cu^{2+} > Zn^{2+}$ $> Co^{2+} > Mg^{2+}$. © 1995 John Wiley & Sons, Inc.

INTRODUCTION

Previous reports¹⁻⁶ have dealt with carboxyl-containing polymers and the ability of the latter to bind heavy metals. It has also been reported⁷⁻¹⁰ that introduction of reactive functional groups in the backbone of highly crosslinked starches brings about products that were capable of removing heavy metal ions from industrial waste water. Thus, anionic starch was prepared by reacting crosslinked starch with monochloroacetic acid.¹¹⁻¹³ Cation exchange starch could also be prepared by saponification of poly(acrylonitrile)-starch graft copolymers^{14,15} and cyanoethylated starch¹⁵ under the influence of alkali. It was found¹⁵ that beside conversion of the cyanide groups to carboxyl groups, alkaline hydrolysis brings about cleavage of ether linkage of the copolymer and cyanoethyl starch. Cleavage of the ether linkage is greater with cyanoethyl starch than the poly-(acrylamide)-starch graft copolymer. The maximum conversion of cyanide groups into carboxyl groups at the optimum conditions was 43.2%.

The present work is undertaken with a view of studying the hydrolysis of crosslinked poly-(acrylamide)-starch graft copolymer in both alkaline and acidic medium. Hydrolysis was carried out under a variety of conditions including sodium hydroxide concentration, acid type, and concentration as well as treatment temperature and duration. This was done to find out the most appropriate conditions for converting the amide groups in the copolymer to carboxyl as a prerequisite for preparing anionic starch. The evaluation of the hydrolysis product as ion exchange is also studied.

EXPERIMENTAL

Materials

Maize starch, acrylamide, potassium persulphate, and sodium hydroxide were of pure grade chemicals. Hydrochloric acid, sulphuric acid, and phosphoric acid were of laboratory grade chemicals. Also, the

^{*} To whom correspondence should be addressed.

Journal of Applied Polymer Science, Vol. 57, 335-342

^{© 1995} John Wiley & Sons, Inc. CCC 0021-8995/95/030335-08

acetate, chloride, and sulphate of zinc, cobalt, copper, and magnesium were of pure grade.

Preparation of Poly(acrylamide)-Starch Graft Copolymers

Maize starch (500 g) was slurried into (5000 mL) of solution containing (1000 g) acrylamide and potassium persulphate (60 mmol/L) and purged for 15 min with nitrogen to remove oxygen. The reaction mixture was heated in an oven at 100°C for 4 h. The reaction product was Soxhlet, extracted with a mixture of ethanol : water (80 : 20) and dried. The prepared poly(acrylamide)-starch graft copolymer was analyzed for nitrogen and carboxyl contents according to reported methods.^{16,17} The prepared poly(acrylamide)-starch graft copolymer contained 785 mmol amide group and 125 mmol carboxyl group/100 g sample.

Alkaline Hydrolysis

Saponification of the aforementioned starch copolymer was performed as follows: 4 g of poly-(acrylamide)-starch graft copolymer was added to 30 mL of sodium hydroxide solution (0.5-2.5N) in 100 mL stoppered flask. This mixture was placed in thermostated water bath at specified temperature $(60-100^{\circ}C)$ for different times (15-120 min). At the end of the required reaction time the content of the flask was poured into 400 mL ethyl alcohol containing the necessary amount of H_2SO_4 to adjust the pH to 3. The product was filtered and washed with ethanol : water mixture (70: 30) and finally with ethanol and dried. The reaction product was analyzed for amide and carboxyl contents.

Acid Hydrolysis

Acid hydrolysis of starch copolymer was performed as follows: 4 g of poly (acrylamide)-starch graft copolymer was added to 50 mL of acid (1N) in 100 mL stoppered flask. This mixture was placed in thermostated water bath at specified temperatures $(80-100^{\circ}C)$ for different times (15-120 min). At the end of the required reaction time, the content was poured into 300 mL ethanol. The product was washed several times with ethanol : water (70:30)and finally with ethanol and dried. The product was analyzed for amide and carboxyl contents.

Heavy Metal Ions Removal

A solution (50 mL) of metal ion (0.01 mol) was treated with the prepared sample (0.25 g) added as

solid. After 24 h contact time, the solution were filtered and the residual metal ions concentration in the filtrate were measured.

RESULTS AND DISCUSSION

It is known that amides undergo hydrolysis to carboxylic acids in alkaline or acidic medium.¹⁸ Crosslinked poly(acrylamide)-starch graft copolymer was saponified under alkaline and acidic medium to study the validity of preparing cation exchange starch.

Alkaline Hydrolysis of Starch Copolymer

On treating poly(acrylamide)-starch graft copolymer with sodium hydroxide solution the following reactions were expected: (1) saponification of amide groups to carboxyl groups;¹⁵ (2) deetherification and depolymerization reactions of the polyacrylate component of the copolymer.^{15,19-21} The extent of these reactions depend on the treatment conditions.

Crosslinked poly(acrylamide)-starch graft copolymer with 785 mmol amide and 125 mmol carboxyl group/100 g was subjected to the action of sodium hydroxide of different concentrations (0.5-2.5N) at various temperatures (60-100°C) for different times (15-90 min). The hydrolytic effect of the alkali was assessed by monitoring the amide content as well as the carboxyl content of the copolymer before and after hydrolysis. The results obtained are set out in Tables I-III.

Amide Content

The results (Tables I-III) signify that alkaline hydrolysis is accompanied by a decrement in the amide content of the copolymer, irrespective to the conditions used. However, the magnitude of this decrement is determined by sodium hydroxide concentration as well as temperature and duration of hydrolysis, being higher the higher the magnitude of these parameters.

It is further noted that the decrement in the amide content during the first 15 min hydrolysis was relatively high, particularly at a sodium hydroxide concentration higher than 0.5N. The decrement in the amide content of the copolymer amount to 3.8%, 10.2%, 16.6%, 41.5%, 50.1%, and 53% when hydrolysis was carried out using 0.50, 0.75, 1.0, 1.5, 2.0, and 2.5N sodium hydroxide, respectively, at 60° C: this against 14.6%, 27.4%, 43.3%, 55%, 66%, and 65% at 80° C and 30.6%, 36.3%, 49.7%, 58.1%, 61.5%,

00			ЮН ent Total	5 910	0 835	0 713	5 688	3 663	5 543
ol/100 £		2.5N	H ₂ —CO at Cont	12	35(38	37	38	33,
as mm			Conter	785	485	333	313	280	208
ssed			Tota	910	887	775	763	725	658
r (Expre		2.0N	-COOH Content	125	390	405	425	430	378
opolyme			-CONH ² Content	785	497	422	338	295	280
aft C			Total	910	905	858	836	822	775
tarch Gr		1.5 <i>N</i>		125	388	420	436	455	465
mide)-S	[H0		-CONH2 Content	785	517	438	400	367	310
oncer	[NaC		Total	910	910	910	910	910	910
ed Poly(s roxide (1.0 <i>N</i>	-COOH Content	125	255	285	315	345	360
li-Treate ium Hyd			-CONH2 Content	785	655	625	595	565	550
Alka d Sod			Total	910	910	910	910	910	910
ntents of itions an		0.75 <i>N</i>		125	205	240	275	310	335
oxyl Co ent Dura			-CONH ₂ Content	785	705	670	635	600	575
l Carb Differ			Total	910	910	910	910	910	910
mide and Using 1		0.5N		125	155	195	235	275	315
The Ai at 60°C				785	755	715	675	635	595
Table I Sample)			Reaction Time (min)	0	15	30	45	60	120

 Table II
 The Amide and Carboxyl Contents of Alkali-Treated Poly(acrylamide)-Starch Graft Copolymer (Expressed as mmol/100 g

 Sample) at 80°C Using Different Durations and Sodium Hydroxide Concentrations

		Total	910	730	630	592	565	542
	2.5N		125	446	400	383	367	344
		-CONH2 Content	785	284	230	209	198	198
		Total	910	858	766	704	690	647
	2.0N		125	475	460	461	475	447
		-CONH ₂ Content	785	383	306	243	215	200
		Total	910	880	821	171	752	728
	1.5N	COOH Content	125	475	480	483	495	511
(H		-CONH2 Content	785	405	341	288	257	217
[NaO		Total	910	910	910	910	910	910
	1.0N	COOH Content	125	465	495	525	555	575
			785	445	415	385	355	335
		Total	910	910	910	910	910	910
	0.75N	-COOH Content	125	340	375	410	445	480
			785	570	535	500	465	430
		Total	910	016	910	910	910	910
	0.5 <i>N</i>	COOH Content	125	240	280	320	355	370
			785	670	630	590	555	540
	:	Reaction Time (min)	0	15	30	45	60	120

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	O Using Different Durations an	Different Durations an	rent Durations an	ations an	ġ	d So	lium Hy	droxide	Conce	entration	S							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									[Na(Н								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.75N 0.75N	0.75 <i>N</i>	0.75 <i>N</i>	0.75N				1.0N			1.5N			2.0N			2.5N	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Cont	0H ent	Total			Total	CONH2 Content	COOH Content	Total	-CONH2 Content	-COOH Content	Total	-CONH ₂ Content	-COOH Content	Tot
910 395 515 910 300 563 863 302 540 842 240 465 70 910 380 530 910 270 508 778 240 465 70 396 57 910 380 550 910 270 508 778 240 465 705 180 396 57 910 360 550 910 265 468 733 223 430 653 150 351 56 910 345 565 910 250 435 685 209 405 614 135 335 47 910 317 593 910 240 350 530 116 320 43	125 910 785 125	910 785 125	785 125	125	ĺ	910	785	125	910	785	125	910	785	125	910	785	125	6
910 380 530 910 270 508 778 240 465 705 180 396 576 910 360 550 910 265 468 733 223 430 653 150 351 501 910 345 565 910 250 435 685 209 405 614 135 335 470 910 347 593 910 240 355 180 350 530 146 910 317 593 910 240 395 635 180 350 530 116 320 436	365 910 500 410	910 500 410	500 410	410		910	395	515	910	300	563	863	302	540	842	240	465	705
910 360 550 910 265 468 733 223 430 653 150 351 501 910 345 565 910 250 435 685 209 405 614 135 335 470 910 317 593 910 240 335 635 180 350 530 436	370 910 483 42	910 483 42	483 42	42	2	910	380	530	910	270	508	778	240	465	705	180	396	576
910 345 565 910 250 435 685 209 405 614 135 335 470 910 317 593 910 240 395 635 180 350 530 116 320 436	375 910 465 44	910 465 44	465 44	44	10	910	360	550	910	265	468	733	223	430	653	150	351	501
910 317 593 910 240 395 635 180 350 530 116 320 436	380 910 450 46	910 450 46	450 46	46	0	910	345	565	910	250	435	685	209	405	614	135	335	470
	390 910 430 480	910 430 480	430 480	480	_	910	317	593	910	240	395	635	180	350	530	116	320	436

and 67% at 100°C. Beyond 15 min hydrolysis, the decrement in amide content continues but in a regular manner.

Carboxyl Content

Tables I–III show the carboxyl content of the prepared copolymer before and after alkaline hydrolysis under different conditions. The data show that:

- 1. The carboxyl content of the hydrolyzed poly(acrylamide)-starch graft copolymer samples depends on sodium hydroxide concentration as well as duration and temperature of the treatment.
- 2. The carboxyl content increases on increasing reaction duration and/or reaction temperature within sodium hydroxide concentration 0.5-1.5N and 0.5-1.0N at $60-80^{\circ}C$ and $100^{\circ}C$, respectively. On the other hand, the

Figure 1 Cleaved groups (expressed as m.mol/100 g sample) under the influence of sodium hydroxide on poly(acrylamide)-starch graft copolymers at different conditions. $\bigcirc, 1.5N; \bullet, 2N; \bigtriangledown, 2.5N$.

20

Table III The Amide and Carboxyl Contents of Alkali-Treated Poly(acrylamide)-Starch Graft Copolymer (Expressed as mmol/100

Figure 2 Conversion (%) of amide groups into carboxyl groups through alkali treatment of poly(acrylamide)starch graft copolymers at different conditions. O, 1.5N; •, 2N; ∇ , 2.5N.

carboxyl content increases with reaction duration to reach a maximum and then decreases on using sodium hydroxide concentration higher than 1.5N.

- 3. The values of these maxima depend on sodium hydroxide concentration as well as temperature, i.e., at 60°C the maxima occur after 45 min and 15 min on using 2.0N and 2.5N sodium hydroxide, respectively, and at 80-100°C, the maxima occur after 15 min on using sodium hydroxide concentration higher than 1.5N.
- 4. The increment in the carboxyl content during the first 15 min hydrolysis is higher compared to those formed during the next equal periods of hydrolysis. This is particularly observed on using all sodium hydroxide concentration at 80-100°C and 0.75N upward at 60°C. The increment in carboxyl content within the first 15 min on using 1.5N were 33.5%, 44.6%, and

Reaction conditions: crosslinked poly(acrylamide)-starch graft copolymer, 4 g; acid (1.0N), 50 mL

at 60

			60°	D					80°	C		
	$H_{3}P$	04	H ₂ St	04	HC	-	$H_{3}P$	04	H ₂ S(04	HC	1
Time (min)	Polymer %	Starch %	Polymer %	Starch %	Polymer %	Starch %	Polymer %	Starch %	Polymer %	Starch %	Polymer %	Starch %
0	64.61	35.39	64.61	35.39	64.61	35.39	64.61	35.39	64.61	35.39	64.61	35.39
15	65.68	34.32	68.50	31.50	69.90	30.10	71.82	28.18	76.10	23.90	76.75	23.25
30	66.60	33.40	69.23	30.78	71.00	29.00	72.42	27.58	79.17	20.83	82.90	17.10
45	67.24	32.76	70.29	29.71	71.10	27.90	73.13	26.87	80.23	19.77	83.50	16.50
60	67.80	32.20	71.36	28.64	73.10	26.90	73.84	26.16	81.29	18.71	84.40	15.60
90	68.30	31.70	72.10	27.90	73.84	26.16	74.90	25.10	85.77	14.23	88.04	11.96
120	68.90	31.10	72.80	27.20	74.55	25.45	76.50	23.50	87.19	12.81	89.50	10.50

 Table V
 The Polymer (%) within Different Periods Using Different Acids at 60°C and 80°C

55.8% of the original amide groups at 60, 80, and 100°C respectively, while the increment within 120 min under the same conditions were 43.3%, 49.2%, and 34.4%, respectively.

- 5. The carboxyl content increases with increasing sodium hydroxide concentration to reach a maximum and then decreases. The value of this maximum depends on reaction temperature and duration, i.e., on using reaction duration of 15 min, the maxima occur at 2.5N, and 1.5N sodium hydroxide for 60° C, and 80- 100° C, respectively.
- 6. It is further noted (Tables I-III) that the increase in carboxyl content is equal to the decrease in amide content at all temperatures on using sodium hydroxide concentration 0.5-1.0N. On the other hand, on using a sodium hydroxide concentration higher than 1.0N, the formed carboxyl groups is much less than the corresponding decrement in amide content, a point that calls for substituents cleavage. Cleavage of substituents was also observed when poly (acrylonitrile)-starch graft copolymer was treated with alkali.¹⁵
- 7. The difference between the increment in carboxyl content and the decrement in amide content increases with increasing sodium hydroxide concentration as well as reaction temperature and/or duration.
- 8. The maximum value of carboxyl content obtained by alkali treatment of poly(acrylamide)-starch graft copolymer was 593 meq COOH/100 g sample. This was achieved on carrying out the saponification reaction at $100^{\circ}C$ with sodium hydroxide (1.0N) for 2 h. The increase in carboxyl content is equal to 59.6% from the original amide content.

Cleavage of Substituent

Reaction conditions: crosslinked poly(acrylamide)-starch graft copolymer, 4 g; acid (1.0N), 50 mL.

The sum of carboxyl and amide contents of poly(acrylamide)-starch graft copolymer before and after alkali treatment (using NaOH concentration more than 1.0N) were calculated. It reveal a large difference, indicating cleavage of some substituent groups. The dependence of this cleavage on the condition of alkali treatment is shown in Figure 1. It is obvious that the amount of cleaved groups increases with increasing sodium hydroxide concentration, treatment duration and temperature.

Exchanger's		Mg ²⁺			Co ²⁺			Zn ²⁺		<u>.</u>	Cu ²⁺	
Capacity meq 100 g	Cl-	SO ₄	Ac ⁻	Cl-	SO ₄	Ac-	Cl-	SO ₄	Ac ⁻	Cl-	SO ₄	Ac-
340	3.5	3.5	48.5	6.2	6.2	56.5	7.6	7.6	76.0	17.2	17.2	83.0
445	4.0	4.0	50.6	6.7	6.7	58.0	8.1	8.1	77.0	23.6	23.6	84.3
575	7.8	7.8	52.2	10.4	10.4	60.0	12.0	12.0	78.3	25.0	25.0	86.1

 Table VI
 Absorption Behavior of Saponified Poly(acrylamide)-Starch Graft Copolymer for Different

 Metal Cations

Conversion Percent

The conversion % of amide groups of the starch copolymer after treatment with sodium hydroxide was calculated as follows:

Conversion $\% = \frac{\text{formed carboxyl groups}}{\text{decrement in amide groups}} \times 100.$

The conversion % of amide groups to carboxyl groups during alkali treatment were set out in Figure 2. The data show that:

- 1. The conversion % depends on sodium hydroxide concentration, i.e., the conversion % was 100% on using sodium hydroxide concentration, up to 1.0N, while it decreases on using higher concentrations and the magnitude of the decrement is higher, the higher concentration used.
- 2. The conversion % decreases in general with increasing either reaction duration or temperature specially at higher sodium hydroxide concentration. The decrement in conversion can be attributed to the deetherification, depolymerization, and cyclization reactions.^{15,19-22}

From the above findings, it is shown that on using sodium hydroxide concentration up to 1.0N the saponification reaction (conversion of $-CONH_2$ group into -COOH) is the lonely reaction, while on using higher concentration, the deetherification and depolymerization reactions occur simultaneously with the saponification reaction.

Acid Hydrolysis of Starch Copolymer

Crosslinked poly(acrylamide)-starch graft copolymer (785 mmol amide and 125 mmol carboxyl group/100 g sample) was subjected to acid hydrolysis at 80°C and 100°C using 1.0N solutions of different acids. These acids were phosphoric, hydrochloric, and sulphuric acids. The hydrolytic effect of acid solutions was assessed by monitoring the amide as well as the carboxyl contents of the copolymer before and after hydrolysis. The results obtained were set out in Tables IV and V. The data show that:

- 1. The amide content depends on the acid type and/or the temperature used.
- 2. The amide content increases with increasing the treatment temperature as well as duration on the contrary of alkaline treatment.
- 3. The increment in amide content follow the order: $HCl \ge H_2SO_4 > H_3PO_4$.
- 4. The carboxyl content has the same behaviour as the amide content.
- 5. The sum of amide and carboxyl content increases with increasing treatment temperature and/or duration.
- 6. The acrylate content of the poly(acrylamide)-starch graft copolymer increases with acid treatment while the starch component decreases.

From these data it is obvious that the hydrolysis of amide group to carboxyl group does not occur, and the main effect is the hydrolytic effect of these mineral acids on the starch component of the poly(acrylamide)-starch graft copolymer, as shown in Tables IV and V. The same phenomenon occurs on hydrolysis of polyacrylonitrile in the presence of sulphuric acid, which shows that the reaction ceased at the amide group step and not to the carboxyl step.²²

Heavy Metal Absorption

The alkali treated poly(acrylamide)-starch graft copolymer were evaluated as a cation exchanger. Saponified copolymers having different capacities were treated with solutions containing cations of Mg^{2+} , Co^{2+} , Zn^{2+} , and Cu^{2+} . The cations were in the form of acetate, chloride, and sulphate. The absorption values of these cations are shown in Table VI. The data show that:

- 1. The absorption % increases with increasing the capacity of exchanger used.
- 2. The absorption % of the different cations follow the order: $Cu^{2+} > Zn^{2+} > Co^{2+} > Mg^{2+}$.
- This is in accordence with Irving-Williams series.²³ The difference in absorbancy % of these different metals is due to the difference in (a) their ability to form covalent bonds with the carboxyl group; (b) ion potential of these metals.

The absorption % of any cation depends on the associated anion and follow the order; acetate > chloride, and sulphate. This difference is attributed to the difference in ionization values (pK_a) of these anions and its effect on the salt formed after sorption of the cation on the cation exchanger.

REFERENCES

- R. Kunin and D. G. Dowing, Chem. Eng. Progr., Symp. Ser., 67, 575 (1971).
- 2. H. Nichiguchi and X. Harui, Jpn. Pat. 7695, 492 (1976).
- 3. P. Monjol, Bull. Soc. Chem. Fr., 215, 1319 (1972).
- J. A. Marinsky and W. M. Anspach, J. Phys. Chem., 79, 435 (1975).
- J. A. Marinsky, N. Imai, and M. C. Lim, *Isr. J. Chem.*, 11, 435 (1973).
- C. Travers and J. A. Marinsky, J. Polym. Sci., Symp. 47, 285 (1974).

- R. E. Wing, W. M. Doane, and C. R. Russell, J. Appl. Polym. Sci., 19, 847 (1975).
- 8. R. E. Wing, Ind. Wastes (Chicago), 21, 26 (1975).
- 9. R. E. Wing and W. M. Doane, U.S. Pat. 3,979,286 (1976).
- M. I. Khalil, A. Waly, S. Farag, and A. Hebeish, J. Appl. Polym. Sci., 43, 2303 (1991).
- I. Kuniak, and R. Marchessault, Can. Pat. 960,652 (1975), C.A. 82, 141948 (1975).
- 12. A. L. Bullock and J. D. Guthrie, U.S. Pat. 3,065,222 (1962).
- 13. A. L. Bullock and J. D. Guthrie, U.S. Pat. 2,992,215 (1961), C.A. 55 228278 (1961).
- W. E. Rayford, R. E. Wing, and W. M. Doane, J. Appl. Polym. Sci., 24, 105 (1979).
- M. I. Khalil, S. Farag, and A. Hebeish, *Starch / Stärke*, 43, (2), 254 (1991).
- A. I. Vogel, Elementary Practical Organic Chemistry, Part 3: Quantitative Organic Analysis, 2nd Ed., Longman Group Ltd., London, 1975, p. 625.
- G. Daul, R. M. Reinhardt, and J. D. Reid, *Textile Res. J.* 23, 719 (1953).
- R. T. Morison and R. N. Boyd, Organic Chemistry, 7th Ed., Allyn and Bacon Inc., Boston, 1975, p. 671.
- 19. M. I. Khalil, A. Bayazeed, S. Farag, and A. Hebeish, *Starch/Starke*, **39**, 311 (1987).
- A. Hebeish and M. I. Khalil, Starch/Stärke, 40, 104 (1988).
- J. R. McCartney, Modern Plast. 30, 118–124, 179– 181 (1953).
- A. Strepikheyev, V. Derevitskaya, and G. Slonimskey, *A First Course in Polymer Chemistry*, Chapt. XII, Mir Publication, Moscow, 1971, p. 259.
- H. Irving and R. J. P. Williams, Nature, 162, 746 (1948); J. Chem. Soc., 3192 (1953).

Received October 3, 1994 Accepted January 10, 1995